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Abstract. Ant colony algorithms are a class of metaheuristics which are
inspired from the behaviour of real ants. The original idea consisted in
simulating the stigmergic communication, therefore these algorithms are
considered as a form of adaptive memory programming. A new formal-
ization is proposed for the design of ant colony algorithms, introducing
the biological notions of heterarchy and communication channels. We are
interested in the way ant colonies handle the information. According to
these issues, an heterarchical algorithm called “Continuous Interacting
Ant Colony” (CIAC) is designed for the optimization of multiminima
continuous functions. CIAC uses two communication channels showing
the properties of stigmergic and direct communications. CIAC presents
interesting emergent properties as it was shown through some analytical
test functions.

1 Introduction

Having recently given raise to a new metaheuristic method, the ant colony
metaphor proved to be a successful approach to solve “difficult” optimization
problems. The first algorithm inspired from the ant colony functioning is the
“ant system” (Colorni & al. 1991), which has been applied to many combina-
torial problems. Until now, there are few adaptations of such algorithms to
continuous optimization problems. The first algorithm designed for continuous
function optimization was CACO (for Continuous Ant Colony Optimization)
(Bilchev & al. 1995) which comprises two levels: global and local. CACO uses
the ant colony framework to perform local searches, whereas global search is
handled by a genetic algorithm. Indeed, the “global” ants perform a simple eval-
uation of some regions defined in the search space, in order to update the regions
fitness. The creation of some new regions is handled by a process very similar
to a genetic algorithm, using common operators that are assimilated by the au-
thors to some real ants colonies behaviour like “random walk” (playing the part
of crossovers and mutations). The local level is handled by ants that explore
more systematically the regions with a simple descending behaviour, in order



to move regions closer to the optimum. The algorithm sends some local ants on
regions, these ants lay down some pheromonal spots when they find an improve-
ment of the objective function and the spots are attractive for all the ants of the
colony. This process is close to the original metaphor, but unfortunately, the use
of two different processes inside the CACO algorithm leads to a delicate setting
of parameters.

All of these algorithms use a particular trait of real ants behaviour: the
pheromonal trail laying (Fig. 1a). Indeed, ants colonies are often viewed as dis-
tributed systems capable of solving complex problems by the way of stigmergy,
which is a form of indirect communication mediated by modifications of envi-
ronment. But the trail-laying behaviour is also a part of the recruitment process,
as the recruitment is defined by biologists as “a special form of assembly in
which members of a society are directed to some point in space where work is
required” (Hölldobler & Wilson 1990, p.642). According to this definition, an-
other optimization method has been developed for continuous optimization. The
API algorithm is inspired by primitive ants behaviour (Monmarché & al. 2000).
API uses a “tandem-running” which involves two ants and leads to gather the in-
dividuals on a same hunting site. The authors use this particular recruitment to
make the population proceed towards the optimum, by selecting the best point
among those evaluated by the ants. This procedure seems to be very similar to
an enhanced random search as this algorithm makes a poor use of memory that
generally characterizes ant colony systems (Taillard & al. 1998).

Our point of view is that ant colony metaphor can be defined as a model
using stigmergy or, more widely, as a recruitment process. According to this
idea, pheromonal trail laying may not be the only way to comprehend the ant
colony metaphor for optimization problems. Our recent research on modelling
ants behaviour (Dréo 2001) has shown that it is possible to start a recruitment
sequence without taking pheromonal trails into account. In this model, the stig-
mergic processes are deliberately ignored and we focus on the inter-individuals
relationships. The model tried to reproduce the flow of ants exiting the nest
after the entry of a scout who has discovered a new food source. To differentiate
this process from the stigmergic recruitment, we called it mobilization (Fig. 1b).
The mobilization is also a form of recruitment process: a scout comes back into
the nest after having located a food source and induces the outing of several
ants. We have shown that, through a simple modelization of trophallaxies (an
exchange of liquid food between two individuals), a colony of ants can solve prob-
lems, like adapting the amplitude and the speed of the exiting flow to the scout’s
state. The main mechanisms involved in the response are the ants state distribu-
tion and the propagation of the mobilization information. Such a model suggests
that the importance of inter-individuals communication may be underestimated,
and that including it into an ant colony system may improve performances by
accelerating the diffusion of information.

We were interested by these various ways of approaching the same idea and
we thought that it would be useful to gather them in a single formalism. Indeed,
there is another interesting way of approaching the social insects behaviour : the
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Fig. 1. Two views of the recruitment process

notion of dense heterarchy, developed in Sect. 2. As it is explained in Sect. 2.1,
this is originally a description of the way the ant colony works from the point
of view of communication, but we propose in Sect. 2.2 a simple formalization in
order to use this notion to design an optimization algorithm. An heterarchical
algorithm takes advantages from a flow of information passing through a popula-
tion of agents. These informations are exchanged using communication channels
and permit that a form of description of the objective function emerges from
the system. The new heterarchical algorithm that we have implemented is called
CIAC, for Continuous Interacting Ant Colony. This paper comprises six more
sections. In Sect.2, we describe the notion of dense heterarchy. The communica-
tions channels used in CIAC are discussed in Sect. 3. The subsequent Sect. 4 is
devoted to the presentation of the CIAC algorithm. Then we discuss in Sect. 5
the tuning of CIAC parameters. In Sect. 6, we present some experimental results.
Conclusion makes up the last section.

2 The Notion of Dense Heterarchy

2.1 A Biological Definition

This notion was firstly introduced by Wilson in 1988 to describe the information
flow inside an ant colony (Wilson & Hölldobler 1988):

“[An] ant colony is a special kind of hierarchy, which can usefully be
called a heterarchy. This means that the properties of the higher levels
affect the lower levels to some degree, but induced activity in the lower
units feeds back to influence the higher levels.”

In this idea, the two communication channels that we have evoked in the intro-
duction are present, the stigmergic channel as well as the direct communication



between individuals. Indeed, these two channels are relatively important for the
ants and thus are good examples to comprehend the notion of heterarchy. One
of the important issues here is that informations flow through the colony, each
of the ants can communicate with any other (which makes the heterarchy being
dense).

This process constructs a kind of densely connected network which is not set
up in a hierarchical but in a heterarchical manner. A good metaphor consists in
emphasizing the opposite behaviour of an ant colony in comparison with that of
a human army, where a general gives orders to a colonel who commands a group
of lieutenants and so on... In the ant colony, contrary to a popular belief, the
“queen” doesn’t tell to the workers what to do, but is only a part of the network
(cf. Fig. 2).

Hierarchy

Heterarchy

Fig. 2. In a dense heterarchy, unlike hierarchy, any individual can communicate with
any other one

Such a system has emergent properties, indeed if each agent operates with
elementary rules and a limited accuracy, the whole population organized in het-
erarchy with mass communication can show an emergent pattern. These findings
are well known in the study of self-organization (Camazine & al. 2000).

To summarize, the notion of dense heterarchy describes the way the ant
colony handles the informations that it receives from the environment. Each ant
can communicate with any other at any time and the informations flow through
the colony.

2.2 Heterarchical Algorithms

We propose here a simple formalization in order to apply the notion of dense
heterarchy to an optimization problem. The main concept for implementing such
an heterarchical algorithm is the idea of communication channel (cf. Fig. 3). A
communication channel may be, to take an example in the “ant metaphor”, the
lay of pheromonal trail. These channels transmit an information, here the local-
ization of a food source, and have some properties, like stigmergy and memory.

For example, some basic properties of the channels are listed below:
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Fig. 3. The informations pass from a part of the population to another one through a
communication channel that has some specific properties

1. Scope: the way the information goes through the population. A sub-group
of the population (from one to n agents) can exchange informations with
another group of agents.

2. Memory: the way the information persists in the system. The information
can be stored during some period of time or be transitory.

3. Integrity: the way the information is evolving in the system. The information
can be modified, by one or more agents, by an external process, or not.

These properties can be combined in the same channel, so that a large variety
of different channels can be built.

The information transmitted during the communication can take many forms,
from a simple value to a complex “object”, therefore it is difficult to describe
some particular classes. The more intuitive ones are for example the vector co-
ordinates of a point and the value of the objective function at this location.

As an example, lets take a look at the properties of the “trail laying” channel.
Basically, the scope is potentially the whole population, as each ant can perceive
the trail pheromone. There is also a form of memory, as this is a stigmergic
process, the trail persists in the environment during a certain period of time.
Finally, the integrity of the channel permits that the informations are damaged
by the time, as the pheromones evaporate.

3 The CIAC communication channels

The design of the CIAC algorithm is quite simple, under the look of the heter-
archical concept. We have implemented three versions, each one defined by the
type of communication channel it uses. As we will see in next sections, this is
very useful to comprehend the way the algorithm works.

3.1 The Stigmergic Channel

The first version of CIAC algorithm is trying to be as close as possible to a
continuous version of the original ACO (Ant Colony Optimization) algorithm
(Colorni & al. 1991) which was designed for combinatorial problems. Due to
this assumption, it has somewhat the same design as the local search part of the



CACO algorithm (Bilchev & al. 1995), which was also inspired by the first Ant
System.

This implementation uses only one communication channel which is inspired
from the trail laying behaviour of ants. Here, each ant can deposit a certain
amount of pheromone as a spot on the search space, proportionally to the ame-
lioration of the objective function she founds on her way. These pheromonal
spots can be perceived by all the members of the population, and diffuse into
the environment. The ants are attracted by each spot according to its distance
and to the amount of pheromone it contains (cf. (1)). The agents are moving
towards the gravity center Gj of the pheromonal spots cloud. The position of
the gravity center depends on the interest ωij of the jth ant for the ith spot.

Gj =
n∑

i=1

(
xi · ωij∑n
i=1 (ωij)

)
with ωij =

δ

2
· e(−θi·δij) (1)

Here, n is the number of spots and xi the position of the ith spot. The variables
involved in the calculation of the interest ωij are: δ the mean distance between
two agents in the population, θi the amount of pheromone laid on the spot and
δij the distance between the jth ant and the ith spot. It is important to notice
that at this point each ant doesn’t go directly on the gravity center. Indeed, each
artificial ant has a “range” parameter (noted φj) that is normally distributed
over the population. Each artificial ant draws a random distance, under the limit
of her range parameter, and then jumps of this length in the direction of her
weighted gravity center, some noise modifying the final position.

To summarize this behaviour under the vision of the heterarchical concept,
this stigmergic communication channel shows the following properties, under-
lined in Sect. 2.2:

1. Scope: When one ant lays a pheromonal spot, all the ants can subsequently
perceive it.

2. Memory: The information persists in the system during a certain period of
time, independently of the agents.

3. Integrity: The information is modified by time, to reproduce the pheromone
evaporation.

There is some similarity between this algorithm and the “path-relinking”
algorithm introduced by Glover (Glover & Laguna 1997), as the ants are moving
through a set of informative points.

3.2 Using the Direct Inter-individual Communication

As we have said in Sect. 1, some biological works have led us to take an interest
out of the common vision of the “stigmergic” ant colony optimization. Indeed,
we have implemented another communication channel which possesses the prop-
erties of the direct inter-individual interactions that can be observed in societies
of some social insects as ants.



In concrete terms, each ant can send “messages” to another one, this means
that the scope of this communication channel is from “peer to peer”. An ant
receiving a message stores it in a stack with other incoming messages. In a
second time, a message is read randomly in the stack. This process is also in-
spired from the works on communication problems in large multi-agents systems
(Hewitt 1977), more particulary on the implementation of parallel programs.
Here, the information sent is the position of the sender – an artificial ant – and
the value of the objective function. The receiver compares the sender’s value
with its own value and decides if it moves near the sender’s position. The final
position is drawn randomly in a hyper-sphere which has the sender for center
and the receiver’s range for radius. But if the receiver’s value is better than the
sender’s one, then the receiver sends a message to another ant randomly chosen,
and suppresses the read message. One can notice that the system needs to be
“activated”, so that an important parameter is the number of messages initially
set.

This communication channel shows the following properties:

1. Scope: When an ant sends a message, only one ant can perceive it.
2. Memory: The information persists in the system during a certain period of

time, under the form of ant’s memory.
3. Integrity: The informations stored are static.

3.3 The Final Algorithm

Finally, the two simple algorithms previously described (Sect. 3.1 and 3.2) are
designed to be quite different. We have approached in Sect. 2.1 the notion of self-
organization where a system made of simple units can show emergent properties
at a high level. According to this idea, we have implemented in the same system
the two simple communication channels, in order to study if they work in synergy
or not. This combination is quite simple to do, as the communication channels
have no concurrent process.

4 The CIAC Algorithm

The algorithm comprises three main steps (Fig. 4). In the first one, the parame-
ters are set up, notably the ants ranges are distributed over the agents population
and they are put randomly within the search space. Then the algorithm starts
and the ants until a stopping criterion is reached: CIAC is stopped if the dif-
ference between two consecutive best points is lower than ε (see below) or if a
maximum number of objective function evaluations has been reached. Ants are
moving according to their own perception of the system, which is handled by
the communication channels.

There is four parameters which need to be set manually. These parameters
have the following functions:

1. η ∈ [0,+∞[: the number of agents in the system.
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Fig. 4. The basic structure of CIAC.



2. σ ∈ [0, 1]: a percentage of the search space amplitude. Used to define the
standard deviation of the normal distribution of ants moves ranges.

3. ρ ∈ [0, 1]: defines the pheromonal spots persistence.
4. µ ∈ [0,+∞[: sets the initial number of messages.

The setting of those four parameters is discussed hereafter.
In addition, there are some other parameters which are included in the algo-

rithm or deduced from the chosen parameters:

1. the distribution of the ants starting points. The ants are distributed ran-
domly within the search space.

2. ε: under this value of pheromone quantity, a spot disappears. It is set to the
minimum value handled by the programming language.

3. ς: the noise quantity added to the ant position when she moves according to
the stigmergic channel. This is a percentage of the ants move range. It is set
according to (2) (cf. Sect. 3.1 for variables names)

{
δ
φj

if δ <= φj

1 else
(2)

5 Tuning of CIAC Parameters

After several trials using a set of 11 classical analytical test functions of 2 to
5 variables, default values for parameters that are not automatically set were
fixed as follows: η = 100, σ = 0.5, ρ = 0.1 and µ = 10. These settings represent
a compromise over all the test functions used and thus are not necessarily the
best ones for a specific function.

The number of ants η is not a critical parameter as it doesn’t influence criti-
cally the overall convergence of the algorithm. With only 10 ants, the algorithm
performs well but the need for more ants increases with the dimension of the ob-
jective function. In fact, a set of 100 ants permits to the algorithm to be flexible
enough over all the functions as well for 2 than for 100 dimensions. On the other
hand, the ranges distribution ratio σ influences the efficiency of the algorithm.
Indeed, it defines the way the search space will be explored, a too little value
will lead to an insufficiently explored search space and a too high value will lead
to random movements. But with experiments, it is easy to show that a relatively
low value of σ is recommended. The two other parameters are interesting be-
cause they are specific to the two communication channels implemented. The
first one, the persistence of the pheromonal spots ρ, is quite sensitive, because
a high value can easily lead the ants to be trapped into a local optimum. Here
also, the experience tells us to use a small value to avoid this issue on the largest
set of functions. The last parameter is µ, the initial messages number, that is
specific to the direct inter-individual communication channel. It is also relatively
critical because a too high value will induce a reduction of the stigmergic chan-
nel influence. The good setting for this parameter is generally under the half of
the number of ants. To summarize, the two most sensitive parameters are those



which are specific to the communication channels implemented in the algorithm,
and generally the algorithm is efficient when there is a “balance” between ρ and
µ: the settings proposed above achieved such a balance. More research is still
necessary to better understand the influence of both parameters. In an improved
version of CIAC algorithm, under preparation, ρ and µ will be automatically set,
as well as σ.

6 Experimental Results

To illustrate the behaviour of CIAC, we have applied it on the B2 function (see
(3)), which has two dimensions and some local minima. The global optimum is
B2 = 0 at (0, 0). We use a search interval of [−50, 100]. We also use 10 ants
to make the figures more readable, all the other parameters values are those
described above.

B2(x1, x2) = x2
1 + 2x2

2 − 0.3 cos (3πx1)− 0.4 cos (4πx2) + 0.7 (3)

The two channels play complementary parts. Indeed, the direct channel leads
to a form of intensification, because it gives more importance to the best points
without taking into account the previously encountered regions. On the contrary,
the stigmergic channel –with its memory property– permits to perform a kind
of diversification, by taking into account the previously evaluated points. Figure
5 shows how the algorithm works with both channels. Globally, the ants gather
at the global optimum. However some of them are kept during some iterations
near local optima by some pheromonal spots still persisting within the search
space, afterwards evaporation and direct communications prevent them from
being trapped.

start

130 eval.

250 eval.

Fig. 5. CIAC optimizing B2 function with the two channels, three steps are shown: at
the beginning, after 130 and 250 evaluations of the objective function

The way the stigmergic channel permits a form of diversification is pointed
out with more difficulties. Figure 6 shows CIAC using only this communication



channel. These four consecutive snapshots are taken after 101, 102, 103 and
104 evaluations of the objective function. The ants are moving around a gravity
center that is the global optimum, but continue to explore the search space, as
they are attracted by local minima.

1 2 3 4

Fig. 6. CIAC optimizing B2 function using only the stigmergic channel, four consecu-
tive steps are shown

One interesting issue is the way the two channels works in synergy. Indeed,
on the simple B2 function, the direct channel seems to be more appropriate as
it allows CIAC to converge more rapidly (Fig. 7a). But if we take a look to the
variation of the standard deviation for the algorithm using the two communica-
tion channels (Fig. 7b), we notice that there is a kind of periodicity. This means
that the population tends to gather near a value at one time and then tends to
disperse. In other words, there is an alternation of short intensification phases
(low deviation) and diversification phases (high deviation). This behaviour of
the CIAC algorithm is an emergent pattern, which cannot be observed when
only one of the two channels is used. Thus CIAC regulates itself the way the two
channels are working, until a stable state is found.

We are testing the CIAC algorithm over a set of analytical test functions
found in the literature. In order to compare CIAC firstly with other ant colony
optimization algorithms, we have chosen a first set of test functions mainly in
the related articles (Bilchev & al. 1995, Mathur & al. 2000 and Monmarché &
al. 2000). Our numerical results will be presented in a paper under preparation.

7 Conclusion

We have shown that the heterarchical concept can be interesting to design new
ant colony algorithms, in particular aimed at the optimization of continuous mul-
timinima functions. Such a biological concept was’nt exploited until now for the
design of optimization algorithms, using only stigmergic processes. We propose
to extend the ant colony metaphor to take into account several communication
processes. CIAC is an heterarchical algorithm implementing two complemen-
tary communication channels. It shows interesting emergent properties, like a
self-management of the relative influence of the two channels.
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Fig. 7. Average and standard deviation of the objective function values in the popu-
lation at different steps

Regarding the future, one important issue consists in improving the auto-
matic tuning of parameters, before testing CIAC through a large set of analytical
test functions, and comparing its efficiency to that of competing metaheuristics.
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